
COMPLEX ANALYSIS HOMEWORK 6

KELLER VANDEBOGERT

1. Problem 1

Define f(z) := π cot(πz)
z2+a2

. Consider

∫
C

f(z)dz

Over a rectangular contour C, as shown below.

With C1 a vertical line with Re(z) = n + 1/2 and similarly C3 a

vertical line at Re(z) = −(n+ 1/2), n ∈ Z is any integer larger than a.

C2 is a line such that Im(z) = n and similarly C4 is such that Im(z) =

−n.

By Cauchy’s Residue theorem, note that the cotangent function has

poles at the points πk, k ∈ Z, and f has two additional simple poles

at ±ia. Using this, we have:
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∫
C

f(z)dz = 2πi
(∑
k∈Z

Res(f, k) + Res(f, ia) + Res(f,−ia)
)

By definition,

Res(f, k) = lim
z→k

(z − k)
π cot(πz)

z2 + a2

=
limz→k π cos(πz)

(sin(πz))′|k(z2 + a2)

=
cos(πk)

cos(πk)(z2 + k2)

=
1

z2 + k2

(1.1)

Also,

Res(f, ia) = lim
z→ia

(z − ia)
π cot(πz)

z2 + a2

= lim
z→ia

π cot(πz)

(z + ia)

=
π cot(πai)

2ia

= −π coth(πa)

2a

(1.2)

Similarly by the above we see that Res(f,−ia) = −π coth(πa)
2a

as well.

Thus, we have:

1

2πi

∫
C

f(z)dz =
n∑

k=−n

1

k2 + a2
− π coth(πa)

a

= 2
n∑
k=0

1

k2 + a2
− 1

a2
− π coth(πa)

a

(1.3)

We want to bound
∫
C
f(z)dz and let n → ∞. On C1 we have that

z = (n+ 1/2) + ti, where t ∈ (−n, n). Thus,
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∣∣∣ ∫
C1

f(z)dz
∣∣∣ ≤ ∫ n

−n

| cot(π(n+ 1/2 + it))|
|((n+ 1/2) + it)2 + a2|

|dz|

≤
∫ n

−n

|e−t − et|
|e−t + et|

1

|n2 + a2|
|dz|

≤ 2n
1

n2 + a2
→ 0

(1.4)

As n→∞. Note that this also takes care of the case for the contour

C3, since we merely set (n+1/2) 7→ −(n+1/2), and the rest is identical

to above. Now, on C2:

∣∣∣ ∫
C2

f(z)dz
∣∣∣ ≤ ∫ n+1/2

−(n+1/2)

| cot(π(t+ in))|
|(t+ in)2 + a2)|

|dz|

≤
∫ n+1/2

−(n+1/2)

|e−n|+ |en|
||e−n| − |en||

1

n2 + a2
|dz|

≤ (2n+ 1)
e−n + en

|e−n − en|
1

n2 + a2
→ 0

(1.5)

As n → ∞, where we note that e−n+en

|e−n−en| is bounded for n positive.

Again, the above work handles the case for C4 since we merely change

in 7→ −in. Using the above, we can let n → ∞ in (1.3) to see that

1
2πi

∫
C
f(z)dz → 0, so that:

0 = = 2
∞∑
k=0

1

k2 + a2
− 1

a2
− π coth(πa)

a

=⇒
∞∑
k=0

1

k2 + a2
=

1

2a2
+
π coth(πa)

2a

(1.6)

As desired.

2. Problem 2

Using the result of the previous problem, set a = 1. We then see:
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∞∑
k=0

1

k2 + 1
=

1

2
+
π coth(π)

2

3. Problem 3

We use the exact same contour C as presented in Problem 1. This

time, define f(z) := π cot(πz)
(2z−1)2 . Then,

1

2πi

∫
C

f(z)dz =
n∑

k=−n

Res(f, k) + Res(f, 1/2)

We then find:

Res(f, k) = lim
z→k

(z − k)
π cot(πz)

(2z − 1)2

=
limz→k π cos(πz)

(sin(πz))′|k(2z − 1)2

=
cos(πk)

cos(πk)(2z − 1)2

=
1

(2k − 1)2

(3.1)

Also,

Res(f, 1/2) = lim
z→1/2

d

dz
(z − 1/2)2

π cot(πz)

4(z − 1/2)2

= lim
z→1/2

−π
2 csc2(πz)

4

= −π
2

4

(3.2)

Using this,
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1

2πi

∫
C

f(z)dz =
n∑

k=−n

1

(2k − 1)2
− π2

4

= 2
n∑
k=0

1

(2k − 1)2
− 2− π2

4

(3.3)

Similar to in Problem 1, we now want to show
∫
C
f(z)dz → 0 as

n→∞. On C1,

∣∣∣ ∫
C1

f(z)dz
∣∣∣ ≤ ∫ n

−n

| cot(π(n+ 1/2 + it))|
|((2n+ 1 + 2it− 1)|2

|dz|

≤
∫ n

−n

|e−t − et|
|e−t + et|

1

n2 + t2
|dz|

≤ 2n
1

n2
→ 0

(3.4)

As n→∞. Again, this shows that the same happens on C3. On C2:

∣∣∣ ∫
C2

f(z)dz
∣∣∣ ≤ ∫ n+1/2

−(n+1/2)

| cot(π(t+ in))|
|(2t+ 2in− 1)2|

|dz|

≤
∫ n+1/2

−(n+1/2)

|e−n|+ |en|
||e−n| − |en||

1

t2 + n2
|dz|

≤ (2n+ 1)
e−n + en

|e−n − en|
1

n2
→ 0

(3.5)

Where we have again used the fact that e−n+en

|e−n−en| is bounded to con-

clude that the entire expression tends to 0 as n→∞. This also takes

care of the case for the contour C4.

Combining the above with (3.3), we use that
∫
C
f(z)→ 0, so that:

0 = 2
∞∑
k=0

1

(2k − 1)2
− 2− π2

4

=⇒
∞∑
k=0

1

(2k − 1)2
= 1 +

π2

8

(3.6)
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And we are done.


